Фильтр для воды от железа



фильтр для воды от железа

Как избавиться от двухвалентного железа в скважинной воде?

Добрый день! Из скважины идет вода, в которой со временем появляется рыжий осадок. Сдал воду на анализ, обнаружили двухвалентное железо — 2,8, остальное в норме. Есть ли бюджетные способы избавления от железа или придется выложить солидную сумму за сложное оборудование? В доме проживаем постоянно вшестером, скважина 45 метров, имеется семь точек водоразбора, в сутки расходуем примерно 1-1,5 куб. метров воды.

Чтобы избавиться от растворенного в воде двухвалентного железа, понадобится его окислить, тогда оно станет трехвалентным. В такой форме железо превращается в тот самый неприятный рыжий осадок, который необходимо отфильтровать. Задачу эту можно решать различными способами, но ни один из них нельзя назвать простым.

Специалисты рекомендуют заказать специальное оборудование, в котором используется катализатор DIRM. Это так называемый безреагентный способ удаления двухвалентного железа из воды. Придется подобрать систему фильтров. В данном случае может быть полезен фильтр-обезжелезиватель объемом 70 л, который позволяет получать очищенную воду в количестве 2,4 куб. м/ч. Однако следует учесть содержание марганца, а также перманганатную окисляемость воды. Если эти показатели выше нормы, процесс окисления железа может существенно замедлиться. Кроме того, понадобится угольный фильтр, а для получения чистой питьевой воды специалисты рекомендуют обзавестись системой обратного осмоса.

С помощью окислителей, таких как BIRM и его аналоги, а также специального оборудования можно эффективно удалить содержащееся в воде двухвалентное железо

Такая система фильтрации удобна тем, что ее можно оборудовать автоматикой, которая будет управлять процессом в зависимости от расхода воды или от установок таймера. Однако стоимость этого варианта довольно высока, поэтому немало владельцев частных домов изобрели народные способы избавления от ненужной железной примеси.

Высокое содержание железа не представляет серьезной опасности для здоровья человека. Санитарными нормами этот показатель причисляется к третьей категории важности, т. е. к самой низкой. В отдельных случаях из-за повышенного содержания железа у людей могут наблюдаться аллергические реакции. А вот техника к такого рода добавкам очень чувствительна, количество поломок всех элементов системы водоснабжения возрастет в несколько раз.

На этой схеме наглядно представлен один из вариантов комплектации оборудования, которое позволяет очистить воду от двухвалентного железа и других вредных примесей

Самый простой и бюджетный способ обезжелезивания воды состоит в том, чтобы позволить двухвалентному железу окислиться естественным образом, а затем дать воде отстояться. Для этого необходимо:

  1.  Найти бак-накопитель достаточного размера из пищевого пластика, нержавейки и т. п.
  2. Установить его в подходящем месте, например на крыше.
  3. Организовать подачу воды из скважины через рассеиватель для душа (это улучшает аэрацию воды).
  4. Обеспечить забор отстоявшейся воды не с самого дна бака, а немного выше, чтобы осадок не попадал в водопровод.

Оптимально, если размеры накопительного бака превышают суточный расход воды. Это позволяет с вечера набирать воду и в течение дня свободно ее использовать.

Народные умельцы экономят и таким образом: используют расчеты специалистов, но отказываются от услуг фирм-установщиков. Приобретаются бочки, окислитель, головки и прочее оборудование, а монтаж осуществляется своими силами.

Очистка воды от железа

Вопрос:

Здравствуйте! У меня на участке содержание железа превышает норму в 23 раза, по жесткости - в 2 раза, можете ли предложить свою технологию очистки? (местонахождение 9-ый км киевского шоссе). С уважением, Елена Владимировна .

Ответ:

Концентрация железа в воде

Уважаемая, Елена Владимировна!

Очистка воды от железа – непростая, хотя и наиболее распространённая проблем а. Железо попадает в питьевую воду не только в природных условиях, но и в результате коррозии аппаратов и трубопроводов. И в этих случаях железо может находиться в ионной, коллоидной и грубодисперсной формах.

Наличие железа в питьевой воде, не прошедшей фильтры воды для обезжелезивания, ухудшает ее вкус и запах, окрашивает воду в коричневатый цвет. При регулярном употреблении такой воды возрастает опасность различных заболеваний внутренних органов – в первую очередь печени и почек. Кроме того, избыточное количество железа неблагоприятно воздействует на кожу человека, влияет на морфологический состав крови, может быть причиной возникновения аллергических реакций, а также способствует накоплению осадка в системе водоотведения. Аналогичные сведения могут быть представлены и в отношении марганца. По российским нормам содержание железа в исходной воде перед натрий-катионитными фильтрами не должно быть больше 0,3 мг/л, а перед водородкатионитными фильтрами – не более 0,5 мг/л. Рекомендуемое содержание марганца в исходной воде – не более 0,1 мг/л.

Помимо вреда здоровью, железо, находящееся в воде, способствует появлению желтых подтеков на сантехнике, зарастанию и коррозии трубопроводов, снижению качества выпускаемой продукции, выходу из строя дорогостоящего оборудования. В таких случаях не обойтись без фильтров воды для обезжелезивания.

В воде поверхностных источников железо находится обычно в форме органо-минеральных коллоидных комплексов, в частности, в виде гуминовокислого железа, и тонкодисперсной взвеси гидроксида железа. В речной воде, загрязненной кислотными стоками, встречается также и сульфат двухвалентного железа FeSO4 .

Концентрация железа в подземных грунтовых водах находится в пределах от 0,5 до 50 мг/л. В центральном российском регионе, включая Подмосковье, эта величина изменяется в диапазоне 0,3–10 мг/л, наиболее часто – 3–5 мг/л, в зависимости от географического местоположения и глубины источника. Начиная с концентрации 1,0–1,5 мг/л вода имеет неприятный металлический привкус.

При значениях более 0,3 мг/л железо оставляет пятна на белье и санитарно-технических изделиях. При концентрации железа менее 0,3 мг/л запах обычно не ощущается, хотя могут появляться мутность и цветность воды.

Железо способствует также развитию «железобактерий», которые получают энергию при окислении Fe 2+ до Fe 3+. в результате чего в трубопроводах и на оборудовании образуется скопление слизи.

В процессе окисления на 1 мг Fe 2+ затрачивается 0,143 мг кислорода (О2 ), увеличивается содержание свободной углекислоты (СО2) на 1,6 мг/л, а щелочность снижается на 0,036 ммоль/л.

Присутствие в воде солей меди, а также контакт воды с ранее выпавшим осадком Fe(OH)3 каталитически ускоряют процесс окисления Fe 2+ до Fe 3+ .

В зависимости от условий (значение рН, температура, наличие в воде окислителей или восстановителей, их концентрация) окисление может предшествовать гидролизу, идти параллельно с ним или окислению может подвергаться продукт гидролиза двухвалентного железа Fe(OH)2 .

Выбор оптимального метода обезжелезивания воды определятся конечными целями, для которых эта вода будет использоваться. И хотя на сегодняшний день не существует единого универсального метода комплексной очистки воды от всех существующих форм железа, используя ту или иную схему водоподготовки, можно добиться желаемого результата в каждом конкретном случае.

Остановлюсь более подробно на этих методах очистки воды от железа:

Очистка воды от железа окислительным обезжелезиванием.

Традиционные методы обезжелезивания воды основываются на окислении двухвалентного железа кислородом воздуха (аэрация) и сильными окислителями (хлор, перманганат калия, перекись водорода, озон) до трехвалентного состояния, с образованием нерастворимого гидроксида железа (III), который впоследствии удаляется отстаиванием, отстаиванием с добавлением коагулянтов и флоккулянтов или фильтрацией.

Очистка воды от железа при помощи аэрации.

Окисление железа аэрацией может проводиться: фонтанированием (так называемые брызгальные установки), душированием, с помощью инжектора, эжектора или компрессора, введением воздуха в трубу под напором, барботацией.

Во многих случаях вода, прошедшая обезжелезивание аэрацией с последующим остаиванием и фильтрацией, уже оказывается пригодной к употреблению в качестве питьевой. По такой упрощенной схеме обезжелезивание эффективно, когда исходная концентрация железа не превышает 10 мг/мл (при содержании двухвалентного железа не менее 70% от общего), концентрация H2 S не более 2,5 мг/л. Окислительно-восстановительный потенциал (редокспотенциал) воды после аэрации не должен быть ниже 100 мВ, а индекс стабильности (индекс Ланжелье) не менее 0,05.

Выбор способа упрощенной аэрации, применяемой при очистке воды, зависит от параметров исходной воды. Так, если концентрация сероводорода в исходной выше 0,5 мг/л, а свободной углекислоты – более 40 мг/л, введения воздуха в трубопровод под напором не требуется – достаточно предусмотреть открытую емкость со свободным изливом в нее воды. Аналогичного эффекта можно достичь с помощью фонтанирования.

Очистка воды окислением двухвалентного железа с добавлением сильных окислителей.

Добавление в воду сильных окислителей значительно интенсифицирует процесс окисления двухвалентного железа. Наиболее широко применяется для очистки воды от железа хлорирование, позволяющее также решить проблему дезинфекции воды, а наиболее эффективным оказывается озонирование. Вследствие того, что, за исключением озона, другие окислители оказываются малоэффективными по отношению к органическому железу. Однако озонирование является и наиболее дорогостоящим методом, требующим больших затрат электроэнергии. Кроме того, практически всегда обезжелезивание происходит одновременно с удалением из воды марганца, который окисляется значительно труднее, чем железо, и при более высоких значениях pH.

Очистка воды осаждением коллоидного железа традиционным промышленным способом.

В обычных условиях процесс осаждения коллоидных частиц гидроксида трехвалентного железа (размер частиц 1–3 мкм) при отстаивании происходит медленно. Укрупнения частиц и, следовательно, ускорения осаждения достигают добавлением коагулянтов. Этого же требует использование на очистительных сооружениях песчаных или антрацитовых фильтров, не способных задерживать мелкие частицы. Так же плохо эти фильтры задерживают органическое железо.

Медленное осаждение коллоидных частиц гидроксида железа (III) вкупе с малой эффективностью применения окислителей и аэрации по отношению к органическому железу, а также ограничение по верхней концентрации железа в исходной воде затрудняет применение традиционной промышленной схемы очистки воды от железа в сравнительно небольших автономных системах, работающих с высокой производительностью. В таких схемах применяются иные установки, обезжелезивание в которых проводится по принципам каталитического окисления с последующей фильтрацией и ионообмена.

Очистка воды от железа при помощи каталитического окисления с последующей фильтрацией.

Это наиболее применяемый сегодня метод для промышленного водоснабжения отдельных не самых крупных предприятий, отдельных коттеджей. Установки для каталитического окисления и фильтрации компактны и отличаются достаточно высокой производительностью (0,5–20,0 м 3 /ч и более в зависимости от сорбента, исходных качеств воды, геометрических характеристик резервуара – баллона из стекловолокна или нержавеющей стали). Реакция окисления железа происходит внутри резервуара установки на гранулах засыпки – специальной фильтрующей среды с каталитическими свойствами. В первую очередь каталитические и фильтрующие свойства этих материалов определяются их высокой пористостью, обеспечивающей среду для протекания реакции окисления и обусловливающей способность к абсорбции.

Широко применяется в качестве каталитической засыпки синтетический материал Birm, позволяющий эффективно и экономично удалять из воды соединения железа и марганца низких и средних концентраций. В установки с засыпкой из Birm подается предварительно аэрированная вода. Доля растворенного в ней кислорода должна быть не менее 15% доли железа (или железа и марганца). Высокая пористость материала и малая насыпная масса (0,7–0,8 г/см 3 ) позволяют легко удалять осадки при обратной промывке. Щелочность в исходной воде должна быть в два раза больше, чем концентрация хлоридов и сульфатов. Недостатками материала Birm являются его высокая склонность к истиранию, из-за чего за год теряется до 10–15 % засыпки, и не самый широкий диапазон рабочих значений pH – 8,0–9,0. Его преимущество – невысокая стоимость.

Также довольно широко применяются каталитические засыпки на основе природных минералов, таких как доломит, цеолит, глауконит. Используется и синтетический цеолит.

На основе доломита, содержащего карбонаты кальция и магния, изготавливаются такие каталитические засыпные материалы, как Магнофилт и Дамфер, отличающиеся высокой пористостью, способствующей проявлению каталитических свойств, большим диапазоном рабочих температур, щелочной реакцией. Защелачивание среды ускоряет реакцию окисления двухвалентного железа растворенным в воде кислородом. При термической обработке карбонат магния, содержащийся в доломите, переходит в оксид MgO, при контакте с водой оксид гидролизуется и высвобождает в раствор гидроксильные ионы, которые связывают в свою очередь ионы водорода и способствуют ускорению реакции окисления двухвалентного железа. Эта особенность характерна для всех фильтрующих материалов с каталитическими свойствами, созданных на основе доломита. Зерна доломита, ко всему прочему, химически стойкие и очень прочные, поэтому практически не расходуются в процессе эксплуатации. Для Магнофилта существуют определенные ограничения: в исходной воде не должны присутствовать масла и сероводород, содержание органических веществ не должно превышать 4–5 мг/л, доля растворенного кислорода должна быть выше доли растворенного железа на 15%, pH = 6,8–8,5. При более высоких значениях pH образуются коллоидные формы трехвалентного железа, которые сложно фильтруются. Хлорирование снижает активность этого материала, поэтому дозировка хлора должна быть минимальной.

Дамфер обладает дополнительными достоинствами. Собственные каталитические свойства доломита в нем усиливаются за счет того, что на стадии термической обработки в состав материала вводится железо в каталитически активной форме, а также другие каталитические добавки: медь, серебро, марганец, фосфаты. Присутствие серебра в этом материале позволяет также подавлять рост железобактерий. По сравнению с материалом Birm скорость окисления железа на Дамфере выше в 250 раз. Кроме того, этот материал может работать при значениях pH ниже 6,0, очищает воду как от двухвалентного, так и от трехвалентного железа, не отравляется сероводородом и остаточным хлором. Слой гидроксида железа (III), образующийся при очистке воды от железа на гранулах Дамфера, еще более усиливает его каталитические свойства. Во-первых, способствует каталитическому окислению железа, во-вторых, имея губчатую структуру, является дополнительным сорбентом, поглощая частицы песка, глины, тяжелые металлы и даже гуминовые кислоты.

Из глауконитового зеленого песка получают еще один широко распространенный материал для каталитической окислительной фильтрации – Glauconite Manganese Greensand. В процессе обработки глауконитового песка в состав Greensand вводятся высшие оксиды марганца, обеспечивающие дополнительную окислительную способность этого материала. К тому же кроме собственных каталитических и окислительных свойств Greensand связывает такие окисляющие агенты, как перманганат калия, хлор, растворенный кислород.

Все это обеспечивает высокую скорость и полноту окислительных реакций. Greensand обладает высочайшей поглощающей способностью, эффективен при очистке воды с высокими концентрациями железа и марганца (суммарно до 10 мг/л) в широком диапазоне pH – 6,2–8,8. Системы с засыпкой из этого материала применяются для очистки воды из скважин любой глубины. Сероводород окисляется до нерастворимых сульфатов. Осадки фильтруются слоем Greensand и сопутствующими фильтрующими слоями. Сорбент не подвержен воздействию микроорганизмов, органических примесей, не требует дезинфекции. Регенерация среды проводится раствором перманганата калия с последующей промывкой исходной водой.

Фильтр для обезжелезивания воды представляет собой металлический баллон с соответствующим наполнителем – например природный минерал глауканит, покрытый слоем оксида марганца (Грин Санд - зеленый песок). Для восстановления окислительной способности зеленого песка в фильтре для очистки воды от железа используется раствор перманганата калия (марганцовка). Размеры фильтра зависят от производительности системы очистки воды.

Кроме этого, в состав фильтра для очистки воды от железа входит система автоматических клапанов. Управляющие клапаны обеспечивает эффективную работу фильтра обезжелезивателя в течение длительной эксплуатации.

Эксплуатационные характеристики фильтра для обезжелезивания воды на основе минерала глауконита, покрытого слоем оксида марганца (Грин Санд - зеленый песок).

Марка фильтра для очистки воды от железа

Источники: http://aqua-rmnt.com/voprosy/kak-izbavitsya-ot-zheleza-v-skvazhine.html, http://www.o8ode.ru/article/answer/clean/o4ictka_vody_ot_geleza.htm





Комментариев пока нет!

Поделитесь своим мнением